Communication-Based Decomposition Mechanisms for Decentralized MDPs
نویسندگان
چکیده
Multi-agent planning in stochastic environments can be framed formally as a decentralized Markov decision problem. Many real-life distributed problems that arise in manufacturing, multi-robot coordination and information gathering scenarios can be formalized using this framework. However, finding the optimal solution in the general case is hard, limiting the applicability of recently developed algorithms. This paper provides a practical approach for solving decentralized control problems when communication among the decision makers is possible, but costly. We develop the notion of communication-based mechanism that allows us to decompose a decentralized MDP into multiple single-agent problems. In this framework, referred to as decentralized semi-Markov decision process with direct communication (Dec-SMDP-Com), agents operate separately between communications. We show that finding an optimal mechanism is equivalent to solving optimally a Dec-SMDP-Com. We also provide a heuristic search algorithm that converges on the optimal decomposition. Restricting the decomposition to some specific types of local behaviors reduces significantly the complexity of planning. In particular, we present a polynomialtime algorithm for the case in which individual agents perform goal-oriented behaviors between communications. The paper concludes with an additional tractable algorithm that enables the introduction of human knowledge, thereby reducing the overall problem to finding the best time to communicate. Empirical results show that these approaches provide good approximate solutions.
منابع مشابه
Accelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملDecentralized coordination via task decomposition and reward shaping
In this work, we introduce a method for decentralized coordination in cooperative multiagent multi-task problems where the subtasks and agents are homogeneous. Using the method proposed, the agents cooperate at the high level task selection using the knowledge they gather by learning subtasks. We introduce a subtask selection method for single agent multi-task MDPs and we extend the work to mul...
متن کاملDecomposing Centralized Multiagent Policies
Using or extending Markov decision processes (MDPs) or partially observable Markov decision processes (POMDPs) to model multiagent decision problems has become an important trend. Generally speaking, there are two types of models: centralized ones and decentralized. The centralized ones focus on finding the best joint action given any global state, while the decentralied ones try to find out th...
متن کاملApplications of DEC-MDPs in multi-robot systems
Optimizing the operation of cooperative multi-robot systems that can cooperatively act in large and complex environments has become an important focal area of research. This issue is motivated by many applications involving a set of cooperative robots that have to decide in a decentralized way how to execute a large set of tasks in partially observable and uncertain environments. Such decision ...
متن کاملDecentralized Multi-Agent Optimization Via Dual Decomposition
We study a distributed multi-agent optimization problem of minimizing the sum of convex objective functions. A new decentralized optimization algorithm is introduced, based on dual decomposition, together with the subgradient method for finding the optimal solution. The iterative algorithm is implemented on a multi-hop network and is designed to handle communication delays. The convergence of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 32 شماره
صفحات -
تاریخ انتشار 2008